Electoral Manipulation as Bureaucratic Control

Scott Gehlbach and Alberto Simpser

University of Wisconsin-Madison and University of Chicago

April 2013
The problem of bureaucratic compliance

- Standard approach: emphasizes formal institutions
 - Contracts, administrative procedures, agency design
 - Example: increase wages, monitoring, punishments

- Under weak institutions, standard approach problematic
 - Ample discretion by those in power
 - Personalized promises and contracts
 - We argue: survival of political patron becomes paramount
In weakly institutionalized environments
- For bureaucrat, success depends on picking sides well
- For politician, key to eliciting compliance is to convince bureaucrat that his grip on power is solid
- Electoral manipulation can be used as an instrument of bureaucratic control
Logic: manipulation and information

- Role of electoral manipulation:
 - Muddles information about ruler’s grip on power
 - Pro: Weak ruler can appear to have strong grip
 - Con: Manipulating is costly and risky

- This is an *indirect effect* of electoral manipulation (Simpser 2005; 2013)
Example: Belarus

“only with the certainty of a big first-round victory could he [Lukashenko] be sure of keeping his hold over state officials” (Belarussian newspaper editor, quoted in MT)
Bureaucratic autonomy from politics around the world

<table>
<thead>
<tr>
<th>Bureaucratic Quality</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of countries</td>
<td>23</td>
<td>28</td>
<td>50</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>Percent of sample</td>
<td>16</td>
<td>20</td>
<td>36</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Representative cases</td>
<td>USA, India, China, Russia, DR Congo</td>
<td>Japan, Indonesia, Brazil, Nigeria, Iraq</td>
<td>France, Mexico, Pakistan, Ethiopia, Mozambique</td>
<td>UK, Italy, Vietnam, Ukraine, Mali</td>
<td></td>
</tr>
</tbody>
</table>

Reflects “autonomy from political pressure” among other things.
General model sketch

1. Principal (politician) provides signal of hold on power
2. Agent (bureaucrat) picks level of effort
 - Effort may (but need not) affect principal survival
3. Principal survives in office or is removed
4. Payoffs given out
 - Bureaucrat receives compensation only if principal survives
Players and assumptions

- Bureaucrat (b), Ruler (r), Citizen (opponent or pragmatist)
- Key assumptions:
 - Bureaucrat’s compensation depends on ruler’s survival
 - Ruler’s hold on power hinges on the citizen’s type
 - Ruler benefits from bureaucrat’s cooperation
 - Model B: bureaucratic effort keeps ruler in office
Timing of events (model B)

1. Citizen’s type realized, \(\Pr(t = p) = q \), observed only by citizen

2. Simultaneously and independently:
 - Citizen votes against/for ruler, \(v \in \{0, 1\} \), in non-binding vote
 - Ruler chooses whether to attempt manipulation, \(m \in \{0, 1\} \)

 Vote and manipulation jointly determine outcome \(\hat{v} \in \{0, 1\} \)

3. Bureaucrat chooses \(e(\hat{v}, m) \in \{0, 1\} \)

4. Ruler survives/not
Timing of events (model B)

1. Citizen’s type realized, $\Pr(t = p) = q$, observed only by citizen

2. Simultaneously and independently:
 - Citizen votes against/for ruler, $v \in \{0, 1\}$, in non-binding vote
 - Ruler chooses whether to attempt manipulation, $m \in \{0, 1\}$

 Vote and manipulation jointly determine outcome $\hat{v} \in \{0, 1\}$

3. Bureaucrat chooses $e(\hat{v}, m) \in \{0, 1\}$

4. Ruler survives/not
Timing of events (model B)

1. Citizen’s type realized, $\Pr(t = p) = q$, observed only by citizen.
 - Simultaneously and independently:
 - Citizen votes against/for ruler, $v \in \{0, 1\}$, in non-binding vote.
 - Ruler chooses whether to attempt manipulation, $m \in \{0, 1\}$.

 Vote and manipulation jointly determine outcome $\hat{v} \in \{0, 1\}$.

2. Bureaucrat chooses $e(\hat{v}, m) \in \{0, 1\}$.

3. Ruler survives/not.
Citizen’s type realized, $Pr(t = p) = q$, observed only by citizen

Simultaneously and independently:
- Citizen votes against/for ruler, $v \in \{0, 1\}$, in non-binding vote
- Ruler chooses whether to attempt manipulation, $m \in \{0, 1\}$

Vote and manipulation jointly determine outcome $\hat{v} \in \{0, 1\}$

Bureaucrat chooses $e(\hat{v}, m) \in \{0, 1\}$

Ruler survives/not
Non-binding vote

- Can understand non-binding vote as election where ruler is guaranteed victory (i.e. for any ν, m)
 - Hence, manipulation m cannot be aimed at winning
 - Nevertheless, in equilibrium manipulation can be useful to ruler

- Outcome $\hat{\nu} \in \{0, 1\}$ is determined thus:
 - If no manipulation then $\hat{\nu} = \nu$
 - If manipulation:
 - If $\nu = 1$ then $\hat{\nu} = 1$
 - If $\nu = 0$ then $Pr\{\hat{\nu} = 1\} = h$
Manipulation technology

\[p \]
\[o \]
\[\hat{v} = 0 \]
\[\hat{v} = 1 \]

\[v = 0 \]
\[v = 1 \]

\[m = 0 \]
\[m = 1 \]

\[h = \text{“effectiveness” of manipulation} \]
Outcomes and payoffs

- **Ruler’s survival technology:**
 \[
 \pi = \begin{cases}
 e & \text{if } t = p \\
 \beta e & \text{if } t = o; \quad \beta \in (0, 1)
 \end{cases}
 \]

- **Payoffs:**
 - **Ruler:** \(u_r = \pi \varsigma - m \kappa \)
 - **Bureaucrat:** \(u_b = \pi \varpi - e \eta \)
 - **Pragmatist:** prefers ruler to survive \(\Leftrightarrow \) bureaucrat exerts effort
 - **Opponent:** strictly prefers to vote against ruler, \(v = 0 \)
Bureaucrat’s expected payoff from $e = 1$:

$$[\hat{q} + (1 - \hat{q}) \beta]w - \eta,$$

where $\hat{q}(m, \hat{v})$ represents posterior belief citizen is pragmatist.

Bureaucrat prefers to exert effort iff

$$\hat{q} \geq \bar{q} \equiv \frac{\eta - \beta w}{w - \beta w}$$

By assumption, $q < \bar{q} \Rightarrow$ no effort in pooling equilibrium (true even with manipulation)
Pooling equilibria

“Pooling”: pragmatist and opponent both choose $v = 0$

- Bureaucrat: no learning and therefore no effort
- Ruler: no manipulation, falls anyway
- Pooling ruled out by intuitive criterion: Off-the-path deviation to $v = 1$ would reveal citizen to be pragmatist
Separating equilibria

“Separation”: pragmatist chooses $v = 1$, opponent $v = 0$

No manipulation:
- Bureaucrat knows citizen’s type with certainty
- Effort if and only if $\hat{v} = 1$

Manipulation:
- Plebiscite outcome is noisy signal: $\hat{v} = 1$ possible if pragmatist or opponent
- Effort if and only if a) $\hat{v} = 1$, and b) signal not too noisy
Choice to manipulate is a choice between two lotteries:

<table>
<thead>
<tr>
<th></th>
<th>Pragmatist (q)</th>
<th>Opponent $(1 - q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No manipulation</td>
<td>ς</td>
<td>0</td>
</tr>
<tr>
<td>Manipulation</td>
<td>$\varsigma - \kappa$</td>
<td>$h\beta\varsigma - \kappa$</td>
</tr>
</tbody>
</table>

If manipulation does not contribute to victory, why does the ruler manipulate?

- Allows ‘weak’ ruler to elicit effort from bureaucrat, by making it seem likely that he is ‘strong’
Proposition

There exists a separating equilibrium in which a pragmatist chooses \(v = 1 \), an opponent chooses \(v = 0 \), and the bureaucrat exerts effort iff \(\hat{v} = 1 \) (any \(m \)). If

\[
\frac{q}{q + (1 - q)h} > \frac{\eta - \beta w}{w - \beta w}
\]

and

\[
k < (1 - q)h\beta\varsigma
\]

then the ruler manipulates in this equilibrium. If either condition fails to hold (weakly), the ruler does not manipulate.
Model A: effort unrelated to survival

- Bureaucrat’s effort benefits ruler, but does not affect survival
- Examples:
 - Effort yields corrupt rents to ruler
 - Effort yields policy that ruler likes
- To elicit effort, ruler pays bonus conditional on observable output
 - But contract binds only if ruler survives
- Result:
 - Separating equilibrium with manipulation exists here too
Main points

1. Electoral manipulation as tool for bureaucratic control
 - Bureaucrats often depend on fate of patron
 - Effort depends on perceived likelihood of patron’s survival
 - Electoral manipulation influences such perceptions

2. Non-electoral motivation for electoral manipulation

3. Generalization:
 - Vanishing principals: job mobility, bankruptcy, etc.
 - Signaling likely survival as key control variable